ГЕОМЕТРИЯ 8/9 КЛАССЫ

Интерактивные карточки с заданиями


Теорема Пифагора

№1. Найдите CD и CA.


Рассмотрим треугольник CBD. По теореме Пифагора найдем длину катета CD по формуле: CD2 = BC2 - BD2. CD2 = 2 - 2 = - = . CD = . Рассмотрим треугольник CDA. По теореме Пифагора найдем гипотенузу CA по формуле: CA2 = CD2 + DA2 . CA2= 2 + 2 = + = . CA = .


№2. ABCD - трапеция. Найдите P (ABCD).


Сторона BC = стороне = . Треугольник ABC - , то по теореме Пифагора => AC2 = AB2 + BC2. AC2 = 2 + 2 = . Сторона CD = стороне = √. Треугольник ACD - => по теореме Пифагора AD2 = AC2 + CD2. AD2 = 2 + 2=. √AD = . P (ABCD) = AB+BC+CD+DA = .


№3. Найдите P (ABC).


Сторона ON || стороне ; Отрезок AO = отрезку => NO - средняя линия ΔABC => отрезок CB равен 2 отрезкам => CB = 2 * = . Анологично ON - средняя линия ΔABC => AA = 2 * = . По теореме Пифагора AB2 = AC2 + CB2 = + = => √AB = . P(ABC) = AC + CB + AB = + + = .


№4. ABCD - трапеция, AD = 11. Найдите AB.


Т. к. трапеция равнобедренная, то угол D = углу = º. Угол F - => угол DCF = º => т. к. у ΔDCF два угла равны, то ΔDCF - => сторона FD = стороне . Вычислим длину стороны FD. Сторона BC составляет часть стороны AD => AD - BC = - = . Сторона FD = / 2 = => по теореме Пифагора CD2 = CF2 + FD2 = 2 + 2 = . AB = CD = √

 
Хостинг от uCoz